NCERT Solutions for Class 12 Chemistry Chapter 6 General Principles and Processes of Isolation of Elements in hindi || ( तत्त्वों के निष्कर्षण के सिद्धान्त एवं प्रक्रम)

NCERT Solutions for Class 12 Chemistry Chapter 6 General Principles and Processes of Isolation of Elements (तत्त्वों के निष्कर्षण के सिद्धान्त एवं प्रक्रम)

एनसीईआरटी कक्षा 12 रसायन शास्त्र अध्याय 7 : तत्त्वों के निष्कर्षण के सिद्धान्त एवं प्रक्रम  समाधान हिंदी में: क्या आप कक्षा 12  के रसायन शास्त्र  के एनसीईआरटी समाधान हिंदी में खोज रहे हैं, यदि हाँ तो आप सही जगह पर आए हैं? हमारे विशेषज्ञ ने सभी विषयों के लिए एनसीईआरटी कक्षा 12 के समाधान बहुत ही वर्णनात्मक तरीके से बनाए हैं ताकि कोई भी छात्र इसे आसानी से समझ सके। हिंदी में यह समाधान सभी छात्रों के लिए बहुत मददगार होने वाला है। हमने सभी विषयों के एनसीईआरटी कक्षा 12  के नोट्स भी बहुत ही सरल तरीकों से हिंदी में बनाए हैं।

तत्त्वों के निष्कर्षण के सिद्धान्त एवं प्रक्रम

अभ्यास के अन्तर्गत दिए गए प्रश्नोत्तर

प्रश्न 1.
सारणी 6.1 (पाठ्यपुस्तक) में दर्शाए गए अयस्कों में से कौन-से चुम्बकीय पृथक्करण विधि द्वारा सान्द्रित किए जा सकते हैं?
उत्तर
वे अयस्क जिनमें कम-से-कम एक घटक (अशुद्धि या वास्तविक अयस्क) चुम्बकीय होता है, उन्हें चुम्बकीय पृथक्करण विधि द्वारा सान्द्रित किया जा सकता है; जैसे- हेमेटाइट (Fe2O3), मैग्नेटाइट (Fe3O4), सिडेराइट (FeCO3) तथा आयरन पाइराइट (FeS2) को चुम्बकीय पृथक्करण विधि द्वारा सान्द्रित किया जा सकता है।

प्रश्न 2.
ऐलुमिनियम के निष्कर्षण में निक्षालन का क्या महत्त्व है?
उत्तर
ऐलुमिनियम के निष्कर्षण में निक्षालन के उपयोग से बॉक्साइट अयस्क से अशुद्धियाँ जैसे SiO2, Fe2O3 आदि को हटाया जा सकता है तथा शुद्ध ऐलुमिना प्राप्त किया जा सकता है।

प्रश्न 3.
अभिक्रिया
Cr2O3 + 2 Al → Al2O3 + 2Cr  (ΔfG = – 421 kJ)
के गिब्ज ऊर्जा मान से लगता है कि अभिक्रिया ऊष्मागतिकी के अनुसार सम्भव है, पर यह कक्ष ताप पर सम्पन्न क्यों नहीं होती ?
उत्तर
ऊष्मागतिकीय रूप से सम्भव अभिक्रियाओं के लिए भी सक्रियण ऊर्जा की निश्चित मात्रा की आवश्यकता होती है, अतः दी गई अभिक्रिया को सम्पन्न करने के लिए अतिरिक्त ऊष्मा की आवश्यकता
होगी।

प्रश्न 4.
क्या यह सत्य है कि कुछ विशिष्ट परिस्थितियों में मैग्नीशियम, SiO2 को अपचयित कर सकता है और Si, MgO को? वे परिस्थितियाँ कौन-सी हैं?
उत्तर
1600 K (सिलिकन का गलनांक) से कम ताप पर, SiO2 के निर्माण के लिए ΔG वक्र, MgO के ΔG वक्र से ऊपर स्थित होता है; अत: 1600 K से कम ताप पर Mg, SiO2 को Si में अपचयित कर सकता है। दूसरी ओर 1600 K से अधिक ताप पर MgO के लिए ΔG वक्र, SiO2 के ΔG वक्र से ऊपर स्थित होता है; अत: 1600 K से अधिक ताप पर Si, MgO को Mg में अपचयित कर सकता है।

अतिरिक्त अभ्यास

प्रश्न 1.
कॉपर का निष्कर्षण हाइड्रोधातुकर्म द्वारा किया जाता है, परन्तु जिंक का नहीं। व्याख्या कीजिए।
उत्तर

से अधिक कियाशील होता है। कॉपर आयनों के विलयन से Cu2+ आयनों को Zn के द्वारा आसानी से प्रतिस्थापित किया जा सकता है।
Zn(s) + Cu2+ (aq) → Zn2+ (aq) + Cu (s)
इस प्रकार, कॉपर को हाइड्रोधातुकर्म के द्वारा निष्कर्षित किया जा सकता है। परन्तु, जिंक को अधिक क्रियाशील होने के कारण, Zn2+ आयन युक्त विलयन से सरलता से विस्थापित नहीं किया जा सकता है। इस प्रकार, कॉपर को हाइड्रोधातुकर्म के द्वारा निष्कर्षित किया जा सकता है। परन्तु, जिंक को अधिक क्रियाशील होने के कारण, Zn2+ आयन युक्त विलयन से सरलता से विस्थापित नहीं किया जा सकता है। इसका कारण यह है कि जिंक से अधिक क्रियाशील धातु; जैसे-ऐलुमिनियम, मैग्नीशियम, कैल्सियम इत्यादि जल से क्रिया करती हैं इसलिए, जिंक को हाइड्रोधातुकर्म के द्वारा निष्कर्षित नहीं किया जा सकता है।

प्रश्न 2.
फेन प्लवन विधि में अवनमक की क्या भूमिका है?
उत्तर
फेन प्लवन विधि में अवनमक का मुख्य कार्य संकरता के द्वारा अयस्क के अवयवों में से किसी एक को फेन बनाने से रोकना है। जैसे, NaCN का प्रयोग अवनमक के रूप में PbS से ZnS अयस्क को पृथक् करने के लिए किया जाता है। यह ZnS के साथ संकर यौगिक बनाता है तथा इसको फेन बनाने से रोकता है।

Q2

इस प्रकार केवल PbS ही फेन बनाने के लिए उपलब्ध होता है तथा इसे ZnS से सरलता से पृथक् किया जा सकता है।

प्रश्न 3.
अपचयन द्वारा ऑक्साइड अयस्कों की अपेक्षा पाइराइट से ताँबे का निष्कर्षण अधिक कठिन क्यों है?
उत्तर
पायराइट अयस्क में, कॉपर Cu2S के रूप में विद्यमान रहता है। Cu2S के निर्माण की मानक मुक्त ऊर्जा (Δf G), CS2 से अधिक होती है, जो कि एक ऊष्माशोषी यौगिक है। इसलिए, कार्बन या H2 का प्रयोग Cu2S को Cu धातु में अपचयित करने के लिए नहीं किया जा सकता है। इसके विपरीत Cu2O के Δf G का मान CO, से बहुत कम होता है। इसलिए, Cu2O को कार्बन के द्वारा Cu धातु में सरलता से अपचयित किया जा सकता है।
Cu2O (s) + C (s) → 2Cu(s) + CO (g)
यही कारण है कि पायराइट से Cu का निष्कर्षण इसके ऑक्साइड के अपचयन द्वारा अधिक कठिन है।

प्रश्न 4.
व्याख्या कीजिए-

  1. मण्डल परिष्करण,
  2. स्तम्भ वर्णलेखिकी।

उत्तर
1. मण्डल परिष्करण (Zone refining) – यह विधि इस सिद्धान्त पर आधारित है कि अशुद्धियों की विलेयता धातु की ठोस अवस्था की अपेक्षा गलित अवस्था में अधिक होती है। अशुद्ध धातु की छड़ के एक किनारे पर एक वृत्ताकार गतिशील तापक लगा रहता है (चित्र-1)। इसकी सहायता से अशुद्ध धातु को गर्म किया जाता है। तापक जैसे ही आगे की ओर बढ़ता है, गलित से शुद्ध धातु क्रिस्टलित हो जाती है तथा अशुद्धियाँ संलग्न गलितं मण्डल में चली जाती हैं। इस क्रिया को कई बार दोहराया जाता है तथा तापक को एक ही दिशा में बार-बार चलाते हैं। अशुद्धियाँ छड़ के एक किनारे पर एकत्रित हो जाती हैं। इसे काटकर अलग कर लिया जाता है। यह विधि मुख्य रूप से अतिउच्च शुद्धता वाले अर्द्धचालकों जैसे जर्मेनियम, सिलिकन, बोरॉन, गैलियम एवं इण्डियम तथा अन्य अतिशुद्ध धातुओं को प्राप्त करने के लिए बहुत उपयोगी है।

तत्त्वों के निष्कर्षण के सिद्धान्त एवं प्रक्रम

  1. स्तम्भ वर्णलेखिकी(Column chromatography) – यह विधि इस सिद्धान्त पर आधारित है। कि अधिशोषक पर मिश्रण के विभिन्न घटकों का अधिशोषण अलग-अलग होता है। मिश्रण को द्रव या गैसीय माध्यम में रखा जाता है जो कि अधिशोषक में से गुजरता है। स्तम्भ में विभिन्न घटक भिन्न-भिन्न स्तरों पर अधिशोषित हो जाते हैं, बाद में अधिशोषित घटक उपयुक्त विलायकों (निक्षालक) द्वारा निक्षालित कर लिए जाते हैं। गतिशील माध्यम की भौतिक अवस्था, अधिशोषक पदार्थ की प्रकृति एवं गतिशील माध्यम के गमन के प्रक्रम पर निर्भर होने के कारण इसे स्तम्भ वर्णलेखिकी‘ नाम दिया गया है। इस प्रकार की एक विधि में काँच की नली में Al2O3 का एक स्तम्भ बनाया जाता है तथा गतिशील माध्यम जिसमें अवयवों का विलयन उपस्थित होता है, द्रव प्रावस्था में होता है। यह स्तम्भ वर्णलेखिकी का एक उदाहरण है।

यह विधि सूक्ष्म मात्रा में पाए जाने वाले तत्वों के शुद्धिकरण और शुद्ध किए जाने वाले तत्व तथा अशुद्धियों के रासायनिक गुणों में अधिक भिन्नता न होने की स्थिति में शुद्धिकरण के लिए अत्यधिक उपयोगी होती है। स्तम्भ वर्णलेखिकी में प्रयुक्त प्रक्रम को चित्र-2 में दर्शाया गया है।

Q4a

प्रश्न 5.
673 K ताप पर C तथा CO में से कौन-सा अच्छा अपचायक है?
उत्तर
673 K ताप पर C एवं CO में से CO एक अच्छा अपचायक है। इसको निम्न प्रकार समझाया जा सकता है –

Q5 2

एलिंघम चित्र (चित्र 3) में, C, CO2 वक्र लगभग क्षैतिज है, जबकि CO, CO2 वक्र उर्ध्वगामी हैं तथा दोनों वक्र 673 K पर एक-दूसरे को काटते हैं। C (s) + O2 (g) → CO2 (g) ऊर्जा की दृष्टि से कम सम्भाव्य है क्योंकि इसकी ΔfG का मान अभिक्रिया 2CO (g) + O2 (g) → CO2 (g) की तुलना में कम ऋणात्मक होता है। इसलिए 673 K से नीचे CO एक अधिक अच्छे अपचायक के रूप में कार्य करता है।

प्रश्न 6.
कॉपर के विद्युत-अपघटन शोधन में ऐनोड पंक में उपस्थित सामान्य तत्वों के नाम दीजिए। वे वहाँ कैसे उपस्थित होते हैं?
उत्तर
कॉपर के वैद्युत शोधन में ऐनोड मड में उपस्थित सामान्य तत्त्व सेलेनिमय, टेलुरियम, सिल्वर, गोल्ड आदि हैं। ये तत्त्व कॉपर से कम क्रियाशील होते हैं तथा वैद्युत प्रक्रिया में अप्रभावित रहते हैं।

प्रश्न 7.
आयरन (लोहे) के निष्कर्षण के दौरान वात्या भट्टी के विभिन्न क्षेत्रों में होने वाली अभिक्रियाओं को लिखिए।
उत्तर
आयरन के ऑक्साइड अयस्कों को निस्तापन अथवा भर्जन से सान्द्रित करके, लाइमस्टोन तथा कोक के साथ मिश्रित करके वात्या भट्टी के हॉपर में डाला जाता है। वात्या भट्टी में विभिन्न ताप-परासों में आयरन ऑक्साइड का अपचयन होता है। वात्या भट्टी में होने वाली अभिक्रियाएँ निम्नलिखित हैं –
500 – 800 K पर (वात्या भट्टी में निम्न ताप परिसर में)

  • 3Fe2O3+ CO → 2 Fe3O4 + CO2 ↑
  • Fe3O4+ 4 CO → 3 Fe ↓ + 4CO2 ↑
  • Fe2O3+ CO → 2 FeO + CO2 ↑

900 – 1500 K पर (वात्या भट्टी में उच्च ताप-परिसर में)

  • C + CO2→ 2 CO ↑
  • FeO + CO → Fe + CO2

चूना पत्थर (लाइमस्टोन) भी CaO में अपघटित हो जाता है जो अयस्क की सिलिकेट अशुद्धि को धातुमल के रूप में हटा देता है। धातुमल (slag) गलित अवस्था में होता है तथा आयरन से पृथक्कृत हो जाता है।

प्रश्न 8.
जिंक ब्लेण्ड से जिंक के निष्कर्षण में होने वाली रासायनिक अभिक्रियाओं को लिखिए।
उत्तर
जिंक ब्लेण्ड से जिंक के निष्कर्षण में होने वाली अभिक्रियाएँ निम्नलिखित हैं –

  1. सान्द्रण(Concentration) – अयस्क को पीसकर फेन प्लवन प्रक्रम द्वारा इसको सान्द्रण किया जाता है।
  2. भर्जन(Roasting) – सान्द्रित अयस्क का लगभग 1200 K ताप पर वायु की अधिकता में भर्जन किया जाता है जिससे जिंक ऑक्साईड (ZnO) प्राप्त होता है।
  3. Q8 2
  4. अपचयन(Reduction) – प्राप्त जिंक ऑक्साइड को चूर्णित कोक के साथ मिलाकर एक फायर क्ले रिटॉर्ट में 1673 K तक गर्म किया जाता है, परिणामस्वरूप यह जिंक धातु में अपचयित हो जाता है।
    ZnO + C \underrightarrow { 1673K } Zn ↓ + CO ↑
    1673 K पर जिंक धातु वाष्पीकृत होकर (क्वथनांक 1180 K) आसवित हो जाती है।
  5. विद्युत-अपघटनी शोधन(Electrolytic refining) – अशुद्ध जिंक ऐनोड बनाता है तथा कैथोड शुद्ध जिंक की शीट से बना होता है। विद्युत-अपघट्य तनु H2SO4 से अम्लीकृत ZnSO4 विलयन होता है। विद्युत धारा प्रवाहित करने पर शुद्ध Zn कैथोड पर संगृहीत हो जाता है।

प्रश्न 9.
कॉपर के धातुकर्म में सिलिका की भूमिका समझाइए।
उत्तर
भर्जन के दौरान कॉपर पाइराइट FeO तथा Cu2O के मिश्रण में परिवर्तित हो जाता है।

Q9 2

FeO (क्षारीय) को हटाने के लिए प्रगलन के दौरान एक अम्लीय गालक सिलिका मिलाया जाता है। FeO, SiO2 से संयोग करके फेरस सिलिकेट (FeSiO3) धातुमल बनाता है जो गलित अवस्था में प्राप्त मैट पर तैरने लगता है।

Q9a

अत: कॉपर के निष्कर्षण में सिलिका की भूमिका ऑक्साइड को धातुमल के रूप में हटाने की होती है।

प्रश्न 10.
‘वर्णलेखिकी पद का क्या अर्थ है?
उत्तर
वर्णलेखिकी (क्रोमैटोग्राफी) ग्रीक भाषा में क्रोमा का अर्थ रंग तथा ग्राफी का अर्थ लिखना होता है। शब्द का प्रयोग सर्वप्रथम 1906 में आईवेट (Iswett) के द्वारा पौधों से रंगीन पदार्थों को पृथक् करने के लिए किया गया था। अब इस शब्द का मूल अर्थ अस्तित्वहीन है क्योंकि आजकल इस तकनीक का प्रयोग व्यापक रूप में पृथक्करण, शोधन तथा रंगीन या रंगहीन मिश्रण के अवयवों के लक्षणीकरण (characterisation) तत्त्वों के निर्धारण में किया जाता है। यह कार्बनिक यौगिक के मिश्रण के अवयवों का दो प्रावस्थाओं के बीच वितरण के सिद्धान्त पर आधारित है। इन दोनों प्रावस्थाओं में एक स्थिर होती है, जो कि ठोस या द्रव हो सकती है। इसे स्थिर प्रावस्था कहते हैं। दूसरी प्रावस्था को गतिशील प्रावस्था कहते हैं। यह गतिशील प्रकृति की होती है और द्रव या गैस की बनी होती है।

प्रश्न 11.
वर्णलेखिकी में स्थिर प्रावस्था के चयन में क्या मापदण्ड अपनाए जाते हैं?
उत्तर
स्थिर प्रावस्था इस प्रकार के पदार्थ की बनी होनी चाहिए, जो कि अशुद्धियों को शुद्ध किये जाने वाले तत्त्व की अपेक्षा अधिक प्रबलता से अधिशोषित करने में सक्षम हो। इससे तत्त्व का निर्गमन (elution) सुगमता से हो जाता है।

प्रश्न 12.
निकिल-शोधन की विधि समझाइए।
उत्तर
निकिल-शोधन का मॉन्ड प्रक्रम (Mond process of nickel purification) – इस प्रक्रम में निकिल (अशुद्ध) को कार्बन मोनोक्साइड के प्रवाह में गर्म करने से वाष्पशील निकिल टेट्रोकार्बोनिल संकुल बन जाता है –
Q12 2
इस कार्बोनिल को और अधिक ताप पर गर्म करते हैं जिससे यह विघटित होकर शुद्ध धातु दे देता है।

Q12a

प्रश्न 13.
सिलिका युक्त बॉक्साइट अयस्क में से सिलिका को ऐलुमिना से कैसे अलग करते हैं? यदि कोई समीकरण हो तो दीजिए।
उत्तर
शुद्ध ऐलुमिना को बॉक्साइट अयस्क से बायर प्रक्रम द्वारा पृथक्कृत किया जा सकता है। सिलिका युक्त बॉक्साईट अयस्क को NaOH के सान्द्र विलयन के साथ 473 – 523 K ताप पर तथा 35 – 36 bar दाब पर गर्म करते हैं। इससे ऐलुमिना, सोडियम ऐलुमिनेट के रूप में तथा सिलिका, सोडियम सिलिकेट के रूप में घुल जाता है तथा अशुद्धियाँ अवशेष के रूप में रह जाती हैं।
Q13
परिणामी विलयन को छानकर अविलेय अशुद्धियों (यदि कोई हो) को हटा दिया जाता है तथा इसे CO2 गैस प्रवाहित करके उदासीन कर दिया जाता है। इस अवस्था पर विलयन को ताजा बने हुए जलयोजित Al2O3 के नमूने से बीजारोपित किया जाता है जो अवक्षेपण को प्रेरित करता है।
Q13b
सोडियम सिलिकेट विलयन में शेष रह जाता है तथा जलयोजित ऐलुमिना को छानकर, सुखाकर तथा गर्म करके पुनः शुद्ध Al2O3 प्राप्त कर लिया जाता है।

तत्त्वों के निष्कर्षण के सिद्धान्त एवं प्रक्रम

प्रश्न 14.
उदाहरण देते हुए भर्जन व निस्तापन में अन्तर बताइए। (2009, 17)
उत्तर
निस्तापन में सान्द्रित अयस्क को उसके गलनांक से नीचे वायु की सीमित मात्रा में गर्म किया जाता है।
Q14
भर्जन में अयस्क को वायु की अधिकता में तीव्रता से गर्म करते हैं। इसके फलस्वरूप P, As, S आदि की अशुद्धियाँ ऑक्सीकृत हो जाती हैं तथा सल्फाइड अयस्क धातु ऑक्साइड में परिवर्तित हो जाता है।

Q14b

प्रश्न 15.
ढलवाँ लोही कच्चे लोहे से किस प्रकार भिन्न होता है?
उत्तर
वात्या भट्टी से प्राप्त अशुद्ध आयरन को कच्चा लोहा कहा जाता है। इसमें S, P, Si, Mn आदि की अशुद्धियों के साथ लगभग 4% कार्बन होता है। ढलवां लोहे को बनाने के लिए कच्चे लोहे को गर्म वायु में स्क्रैप आयरन तथा कोक के साथ पिघलाया जाता है। इसमें कार्बन की मात्रा कम (लगभग 3%) पायी जाती है।

प्रश्न 16.
अयस्कों तथा खनिजों में अन्तर स्पष्ट कीजिए।
उत्तर
प्राकृतिक रूप से उपस्थित रासायनिक पदार्थ, जिनके रूप में धातुएँ अशुद्धियों के साथ भूपर्पटी में उपस्थित होती हैं, खनिज (minerals) कहलाते हैं। वे खनिज, जिनसे धातुओं का निष्कर्षण सरल तथा आर्थिक रूप से लाभदायक हो, अयस्क कहलाते हैं। अतः सभी अयस्क खनिज होते हैं, परन्तु सभी खनिज अयस्क नहीं होते हैं। उदाहरणार्थ– भूपर्पटी में लोहा ऑक्साइडों, कार्बोनेटों तथा सल्फाइडों के रूप में विद्यमान होता है। लोहे के इन खनिजों में से निष्कर्षण के लिए लोहे के ऑक्साइडों को चुना जाता है, इसलिए लोहे के ऑक्साइड, लोहे के अयस्क हैं। इसी प्रकार भूपर्पटी में ऐलुमिनियम दो खनिजों के रूप में पाया जाता है- बॉक्साइट (Al2O3 . xH2O) तथा क्ले (Al2O3 . 2SiO2 . 2H2O)। इन दोनों खनिजों में से बॉक्साइट से Al का निष्कर्षण सरलतापूर्वक तथा आर्थिक रूप से लाभदायक रूप में किया जा सकता है, इसलिए बॉक्साइट ऐलुमिनियम का अयस्क है।

प्रश्न 17.
कॉपर मैट को सिलिका की परत चढ़े हुए परिवर्तकों में क्यों रखा जाता है?
उत्तर
सिलिका युक्त परिवर्तक (बेसेमर परिवर्तक) में मैट में उपस्थित शेष FeS को FeO में ऑक्सीकृत करने के लिए रखा जाता है जो सिलिका के साथ संयोग कर संगलित धातुमल बनाता है।
Q17
जब सम्पूर्ण लोहे को धातुमल के रूप में पृथक् कर लिया जाता है, तब कुछ Cu2S ऑक्सीकरण के फलस्वरूप Cu2O बनाता है जो अधिक Cu2S के साथ अभिक्रिया करके कॉपर धातु बनाता है।
2Cu2S + 3O2 → 2Cu2O + 2SO2 ↑
2Cu2O + Cu2S → 6Cu ↓ + SO2 ↑
अत: कॉपर मैट को सिलिका की परत चढ़े हुए परिवर्तक में मैट में उपस्थित FeS को FeSiO3 धातुमल के रूप में हटाने के लिए भी रखा जाता है।

प्रश्न 18.
ऐलुमिनियम के धातुकर्म में क्रायोलाइट की क्या भूमिका है?
उत्तर
क्रायोलाइट, मिश्रण के संगलन ताप को कम करता है तथा ऐलुमिना की वैद्युत चालकता को बढ़ाता है जो कि वास्तव में विद्युत का अच्छा चालक नहीं होता है।

प्रश्न 19.
निम्न कोटि के कॉपर अयस्कों के लिए निक्षालन क्रिया को कैसे किया जाता है?
उत्तर
निम्न ग्रेड कॉपर अयस्क का निक्षालन वायु या जीवाणुओं की उपस्थिति में अम्ल के साथ क्रिया कर किया जाता है। इस प्रक्रिया में कॉपर Cu2+ आयनों के रूप में विलयन में चला जाता है।
Cu (s) + 2H+ (aq) + 1/2 O2 (g) → Cu2+ (aq) + H2O (l)

प्रश्न 20.
Co का उपयोग करते हुए अपचयन द्वारा जिंक ऑक्साइड से जिंक का निष्कर्षण क्यों नहीं किया जाता?
उत्तर
एलिंघम चित्र में CO, CO2 वक्र Zn, ZnO वक्र के ऊपर स्थित है। यह स्पष्ट करता है कि CO से CO2 बनाने के लिए Δf G का मान Zn से ZnO के निर्माण के मान से कम ऋणात्मक है। इसलिए, यदि CO का अपचायक के रूप में प्रयोग किया जाता है, तो अपचयन में बहुत अधिक ताप की आवश्यकता होगी। यही कारण है कि जिंक को CO अपचायक के प्रयोग द्वारा ZnO से निष्कर्षित नहीं किया जाता है।

प्रश्न 21.
Cr2O3 के विरचन के लिए Δf G का मान – 540 kJ mol-1 है तथा Al2O3 के लिए – 827 kJ mol-1 है। क्या Cr2O3 का अपचयन Al से सम्भव है?
उत्तर
हाँ, Al के द्वारा Cr2O3 का अपचयन सम्भव है। इसको निम्न प्रकार समझा जा सकता है –
इस प्रक्रिया में निहित अभिक्रियाएँ निम्न हैं –
2Al (s) + 3/2 O2 (g) → Al2O3 (s); Δf G  = – 827 kJ mol-1 …(i)
2Cr (s) + 3/2 O2 (g) → Cr2O3 (s) ;  Δf G = – 540 kJ mol-1 …(ii)
समीकरण (ii) में से (i) को घटाने पर
2Al (s) + Cr2O3 (3) → Al2O3 (s) + 2Cr (s);
Δf G = – 827- (-540) = – 287 kJ mol-1
चूँकि संयुक्त रिडॉक्स अभिक्रिया के लिए Δf G– का मान ऋणात्मक है, इसलिए प्रक्रिया सम्भाव्य है। अर्थात् Al के द्वारा Cr2O3 का अपचयन सम्भव है।

प्रश्न 22.
C व CO में से ZnO के लिए कौन-सा अपचायक अच्छा है?
उत्तर
कार्बन CO से अधिक अच्छा अपचायक है, इसको अग्र प्रकार स्पष्ट किया जा सकता है –
एलिंघम चित्र में, C, CO वक्र Zn, ZnO वक्र से 1120 K से अधिक ताप पर नीचे स्थित तथा C, CO2 वक्र 1323 K से अधिक ताप पर नीचे स्थित है। इस प्रकार, C से CO के लिए Δf G का मान तथा C, CO2 के लिए Δf G के मान क्रमशः 1120 K तथा 1323 K पर C से ZnO के लिए Δf G के मान से कम है जबकि CO, CO2 वक्र Zn, ZnO वक्र से 2273 K पर भी ऊपर है। इसलिए ZnO को C के द्वारा अपचयित किया जा सकता है परन्तु CO के द्वारा नहीं। इसलिए C व CO में से ZnO के अपचयन के लिए C अधिक अच्छा अपचायक है।

प्रश्न 23.
किसी विशेष स्थिति में अपचायक का चयन ऊष्मागतिकी कारकों पर आधारित है। आप इस कथन से कहाँ तक सहमत हैं? अपने मत के समर्थन में दो उदाहरण दीजिए।
उत्तर
किसी निश्चित धात्विक ऑक्साइड का धात्विक अवस्था में अपचयन करने के लिए उचित अपचायक का चयन करने में ऊष्मागतिकी कारक सहायता करता है। इसे निम्नवत् समझा जा सकता है –
एलिंघम आरेख से यह स्पष्ट होता है कि वे धातुएँ, जिनके लिए उनके ऑक्साइडों के निर्माण की मानक मुक्त ऊर्जा अधिक ऋणात्मक होती है, उन धातु ऑक्साइडों को अपचयित कर सकती हैं जिनके लिए उनके सम्बन्धित ऑक्साइडों के निर्माण की मानक मुक्त ऊर्जा कम ऋणात्मक होती है। दूसरे शब्दों में, कोई धातु किसी अन्य धातु के ऑक्साइड को केवल तब अपचयित कर सकती है, जबकि यह एलिंघम आरेख में इस धातु से नीचे स्थित हो। चूंकि संयुक्त रेडॉक्स अभिक्रिया का मानक मुक्त ऊर्जा परिवर्तन ऋणात्मक होगा (जो कि दोनों धातु ऑक्साइडों के Δf G में अन्तर के तुल्य होता है।), अत: Al तथा Zn दोनों FeO को Fe में अपचयित कर सकते हैं, परन्तु Fe, Al2O3 को Al में तथा Zn0 को Zn में अपचयित नहीं कर सकता। इसी प्रकार C, ZnO को Zn में अपचयित कर सकता है, परन्तु CO ऐसा नहीं कर सकता।

प्रश्न 24.
उस विधि का नाम लिखिए जिसमें क्लोरीन सह-उत्पाद के रूप में प्राप्त होती है। क्या होगा यदि NaCl के जलीय विलयन का विद्युत-अपघटन किया जाए?
उत्तर
डाउन की प्रक्रिया में गलित NaCl के वैद्युत-अपघटन के फलस्वरूप सह-उत्पाद के रूप में क्लोरीन प्राप्त होती है।
NaCl (fused) → Na+ + Cl
कैथोड पर : Na+ + e → Na (s)
ऐनोड पर : Cl + e → 1/2 cl2 (g)
जब NaCl के जलीय विलयन का वैद्युत-अपघटन किया जाता है, तो कैथोड पर H2 गैस तथा ऐनोड पर Cl2 गैस प्राप्त होती हैं। NaOH का एक जलीय विलयन सह-उत्पाद के रूप में प्राप्त है।
NaCl (aq) → Na+ (aq) + Cl (aq)
ऐनोड पर : Cl (aq) + e → 1/2 Cl2 (g)
कैथोड पर : 2H2O (l) + 2e → 2OH (a) + H2 (g)

प्रश्न 25.
ऐलुमिनियम के विद्युत-धातुकर्म में ग्रेफाइट छड़ की क्या भूमिका है?
उत्तर
इस प्रक्रिया में ऐलुमिना, क्रायोलाईट तथा फ्लुओरस्पार (CaF2) के गलित मिश्रण का विद्युतअपघटन ग्रेफाइट को ऐनोड के रूप में तथा ग्रेफाइट की परत चढ़े हुए आयरन को कैथोड के रूप में प्रयुक्त करके किया जाता है। विद्युत-अपघटन करने पर Al कैथोड पर मुक्त होती है, जबकि ऐनोड पर CO तथा CO2 मुक्त होती हैं।
कैथोड पर : Al3+ (गलित) → Al (l)
ऐनोड पर : C (s) + O2- (गलित) → CO (g) + 2e
C (s) + 2O2- (गलित) → CO2 (g) + 4e

यदि किसी अन्य धातु को ग्रेफाइट के स्थान पर प्रयुक्त किया जाता है, तब मुक्त O2 न केवल इलेक्ट्रोड की धातु को ऑक्सीकृत ही करेगी, बल्कि कैथोड पर मुक्त Al की कुछ मात्रा को पुनः Al2O3 में परिवर्तित कर देगी। चूँकि ग्रेफाइट अन्य किसी धातु से सस्ता होता है, इसलिए इसे ऐनोड के रूप में प्रयुक्त किया जाता है। इस प्रकार ऐलुमिनियम के निष्कर्षण में ग्रेफाइट छड़ की भूमिका ऐनोड पर मुक्त O2 को संरक्षित करना है जिससे यह मुक्त होने वाले Al की कुछ मात्रा को पुन: Al2O3 में परिवर्तित न कर दे।

प्रश्न 26.
निम्नलिखित विधियों द्वारा धातुओं के शोधन के सिद्धान्तों की रूपरेखा दीजिए –

  1. मण्डल परिष्करण
  2. विद्युत-अपघटनी परिष्करण
  3. वाष्प प्रावस्था परिष्करण।

उत्तर
1. मण्डल परिष्करण (Zone refining) – इसके लिए अभ्यास-प्रश्न संख्या 4(i) देखिए।

  1. विद्युत-अपघटनी परिष्करण(Electrolytic Refining) – इस विधि में अशुद्ध धातु को ऐनोड बनाते हैं। उसी धातु की शुद्ध धातु-पट्टी को कैथोड के रूप में प्रयुक्त करते हैं। इन्हें एक उपयुक्त विद्युत-अपघट्य का विलयन विश्लेषित्र में रखते हैं जिसमें उसी धातु का लवण घुला रहता है। अधिक क्षारकीय धातु विलयन में रहती है तथा कम क्षारकीय धातुएँ ऐनोड पंक (anode mud) में चली जाती हैं। इस प्रक्रम की व्याख्या, विद्युत विभव की धारणा, अधिविभव तथा गिब्ज ऊर्जा के द्वारा (उपयोग) भी की जा सकती है। ये अभिक्रियाएँ निम्नलिखित हैं –
    ऐनोड पर : M → Mn+ + ne
    कैथोड पर : Mn+ + ne → M
    उदाहरण– ताँबे का शोधन विद्युत-अपघटनी विधि के द्वारा किया जाता है। अशुद्ध कॉपर ऐनोड के रूप में तथा शुद्ध कॉपर पत्री कैथोड के रूप में लेते हैं। कॉपर सल्फेट का अम्लीय विलयन विद्युत-अपघट्य होता है तथा विद्युत अपघटन के वास्तविक परिणामस्वरूप शुद्ध कॉपर ऐनोड से कैथोड की तरफ स्थानान्तरित हो जाता है।
    ऐनोड पर : Cu → Cu2+ + 2e
    कैथोड पर : Cu2+ + 2e → Cu
    फफोलेदार कॉपर से अशुद्धियाँ ऐनोड पंक के रूप में जमा होती हैं जिसमें एण्टिमनी, सेलीनियम टेल्यूरियम, चाँदी, सोना तथा प्लैटिनम मुख्य होती हैं। इन तत्वों की पुन: प्राप्ति से शोधन की लागत की क्षतिपूर्ति हो सकती है। जिंक को शोधन भी इसी प्रकार से किया जा सकता है।
  2. वाष्प प्रावस्था परिष्करण(Vapour Phase Refining) – इस विधि में धातु को वाष्पशील यौगिक में परिवर्तित करके दूसरे स्थल पर एकत्र कर लेते हैं। इसके बाद इसे विघटित करके शुद्ध धातु प्राप्त कर लेते हैं। इस प्रक्रिया की दो आवश्यकताएँ होती हैं –
  • उपलब्ध अभिकर्मक के साथ धातु वाष्पशील यौगिक बनाती हो तथा
  • वाष्पशील पदार्थ आसानी से विघटित हो सकता हो जिससे धातु आसानी से पुनः प्राप्त की जा सके।

उदाहरण– जिर्कोनियम या टाइटेनियम के शोधन के लिए वॉन-आरकैल विधि : यह Zr तथा Ti जैसी कुछ धातुओं से अशुद्धियों की तरह उपस्थित सम्पूर्ण ऑक्सीजन तथा नाईट्रोजन को हटाने में बहुत उपयोगी है। परिष्कृत धातु को निर्वातित पात्र में आयोडीन के साथ गर्म करते हैं। धातु आयोडाइड अधिक सहसंयोजी होने के कारण वाष्पीकृत हो जाता है।
Zr + 2I2 → ZrI4
धातु आयोडाइड को विद्युत धारा द्वारा 1800 K ताप पर गर्म किए गए टंग्स्टन तन्तु पर विघटित किया जाता है। इस प्रकार से शुद्ध धातु तन्तु पर जमा हो जाती है।
ZrI4 → Zr ↓ + 2I2 ↑

प्रश्न 27.
उन परिस्थितियों का अनुमान लगाइए जिनमें Al, MgO को अपचयित कर सकता है।
उत्तर
दोनों अभिक्रियाएँ इस प्रकार हैं –
\frac { 4 }{ 3 } Al + O2 → \frac { 2 }{ 3 } Al2O3 ; ΔG Al, Al2O3 …(i)
2Mg + O2 → 2MgO ; ΔG Mg, MgO
एलिंघम आरेख द्वारा स्पष्टीकरण – कुछ ऑक्साइडों के विरचन में AG° तथा T के एलिंघम आरेख निम्नवत् हैं –
Q27
उपर्युक्त आरेख से स्पष्ट है कि 1665 K से नीचे तापमान पर Al2O3 का ΔG मान MgO की तुलना में कम ऋणात्मक है। अतः जब समीकरण

  • को समीकरण
  • में से घटाया जाता है तो संयुक्त रेडॉक्स अभिक्रियाओं अर्थात् समीकरण
  • काΔG ऋणात्मक होता है।

2Mg + \frac { 2 }{ 3 } Al2O3 → 2MgO + \frac { 4 }{ 3 } Al ; ΔG = – ve …(iii)
इस प्रकार 1665 K से नीचे तापमान पर Mg, Al2O3 को Al में अपचयित कर सकता है। 1665 K से अधिक तापमान पर Al2O3 का ΔG मान MgO की तुलना में अधिक ऋणात्मक होता है। इसलिए जब समीकरण (ii) को समीकरण (i) में से घटाया जाता है तो संयुक्त रेडॉक्स अभिक्रिया अर्थात् समीकरण (iv) का ΔG ऋणात्मक होता है।
\frac { 4 }{ 3 } Al+ 2 MgO → \frac { 2 }{ 3 } Al2O3 + 2Mg ; ΔG = – Ve …(iv)
अत: 1665 K से अधिक तापमान पर Al, MgO को Mg में अपचयित कर सकता है।

Leave a Reply

Your email address will not be published.